A Wiener-Hopf Monte-Carlo simulation technique for Levy processes

نویسندگان

  • BY A. KUZNETSOV
  • A. E. KYPRIANOU
  • J. C. PARDO
چکیده

We develop a completely new and straightforward method for simulating the joint law of the position and running maximum at a fixed time of a general Lévy process with a view to application in insurance and financial mathematics. Although different, our method takes lessons from Carr’s so-called “Canadization” technique as well as Doney’s method of stochastic bounds for Lévy processes; see Carr [Rev. Fin. Studies 11 (1998) 597–626] and Doney [Ann. Probab. 32 (2004) 1545–1552]. We rely fundamentally on the Wiener– Hopf decomposition for Lévy processes as well as taking advantage of recent developments in factorization techniques of the latter theory due to Vigon [Simplifiez vos Lévy en titillant la factorization de Wiener–Hopf (2002) Laboratoire de Mathématiques de L’INSA de Rouen] and Kuznetsov [Ann. Appl. Probab. 20 (2010) 1801–1830]. We illustrate our Wiener–Hopf Monte Carlo method on a number of different processes, including a new family of Lévy processes called hypergeometric Lévy processes. Moreover, we illustrate the robustness of working with a Wiener–Hopf decomposition with two extensions. The first extension shows that if one can successfully simulate for a given Lévy processes then one can successfully simulate for any independent sum of the latter process and a compound Poisson process. The second extension illustrates how one may produce a straightforward approximation for simulating the two-sided exit problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying the Wiener-Hopf Monte Carlo Simulation Technique for Lévy processes to Path Functionals such as First Passage Times, Undershoots and Overshoots

In this note we apply the recently established Wiener-Hopf Monte Carlo (WHMC) simulation technique for Lévy processes from Kuznetsov et al. [17] to path functionals, in particular first passage times, overshoots, undershoots and the last maximum before the passage time. Such functionals have many applications, for instance in finance (the pricing of exotic options in a Lévy model) and insurance...

متن کامل

Applying the Wiener-Hopf Monte Carlo Simulation Technique for Lévy Processes to Path Functionals

In this note we apply the recently established Wiener-Hopf Monte Carlo (WHMC) simulation technique for Lévy processes from Kuznetsov et al. [22] to path functionals, in particular first passage times, overshoots, undershoots and the last maximum before the passage time. Such functionals have many applications, for instance in finance (the pricing of exotic options in a Lévy model) and insurance...

متن کامل

An HJM approach to equity derivatives ”

There has been recent interest in applying the Heath-JarrowMorton interest rate framework to other areas of financial modelling. Unfortunately, there are serious technical challenges in implementing the approach for modelling the dynamics of the implied volatility surface of a given stock. By a suitable change of parametrisation, we derive an HJMstyle SPDE and discuss its existence theory. We s...

متن کامل

Risk measurement and Implied volatility under Minimal Entropy Martingale Measure for Levy process

This paper focuses on two main issues that are based on two important concepts: exponential Levy process and minimal entropy martingale measure. First, we intend to obtain   risk measurement such as value-at-risk (VaR) and conditional value-at-risk (CvaR) using Monte-Carlo methodunder minimal entropy martingale measure (MEMM) for exponential Levy process. This Martingale measure is used for the...

متن کامل

Efficient pricing options under regime switching

In the paper, we propose two new efficient methods for pricing barrier option in wide classes of Lévy processes with/without regime switching. Both methods are based on the numerical Laplace transform inversion formulae and the Fast Wiener-Hopf factorization method developed in Kudryavtsev and Levendorskǐi (Finance Stoch. 13: 531–562, 2009). The first method uses the Gaver-Stehfest algorithm, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010